HW8 solution

7.4.1 The likelihood function is given by $L\left(\lambda \mid x_{1}, \ldots, x_{n}\right)=\lambda^{n} \prod\left(1+x_{i}\right)^{-\lambda-1}$. The prior distribution has density given by $\pi(\lambda)=\beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda} / \Gamma(\alpha)$. The posterior density is then proportional to $\lambda^{n+\alpha-1} \prod\left(1+x_{i}\right)^{-\lambda} e^{-\beta \lambda}=$ $\lambda^{n+\alpha-1} \exp \left(-\lambda \ln \left(\prod\left(1+x_{i}\right)\right)\right) e^{-\beta \lambda}=\lambda^{n+\alpha-1} \exp \left[-\lambda\left(\ln \left(\prod\left(1+x_{i}\right)\right)+\beta\right)\right]$, and so the posterior is a $\operatorname{Gamma}\left(n+\alpha, \ln \left(\prod\left(1+x_{i}\right)\right)+\beta\right)$ distribution. Hence, this is a conjugate family.
7.4.2 The likelihood function is given by $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{-n} I_{\left[x_{(n)}, \infty\right)}(\theta)$. The prior distribution has density given by $\pi(\theta)=\theta^{-\alpha} I_{[\beta, \infty)}(\theta) /(\alpha-1) \beta^{\alpha-1}$, where $\alpha \geq 1$ and $\beta>0$. The posterior density is then proportional to $\theta^{-n-\alpha} I_{\left[x_{(n)}, \infty\right)}(\theta) I_{[\beta, \infty)}(\theta)=\theta^{-n-\alpha} I_{\left[\max \left\{x_{(n)}, \beta\right\}, \infty\right)}$, which is of the same form as the family of priors and so this is a conjugate family for this problem.
9.1.5 By grouping the data into five equal intervals each having length 0.2 , the expected counts for each interval are $n p_{i}=4$, and the observed counts are given in the following table.

Interval	Count
$(0.0,0.2]$	4
$(0.2,0.4]$	7
$(0.4,0.6]$	3
$(0.6,0.8]$	4
$(0.8,1]$	2

The Chi-squared statistic is equal to 3.50 and the P -value is given by $\left(X^{2} \sim\right.$ χ^{2} (4)) $P\left(X^{2} \geq 3.5\right)=0.4779$ Therefore, we have no evidence against the Uniform model being correct.
9.1.6 First note that if the die is fair, the expected number of counts for each possible outcome is 166.667 . The Chi-squared statistic is equal to 9.5720 and the P-value is given by $\left(X^{2} \sim \chi^{2}(5)\right) P\left(X^{2} \geq 9.5720\right)=.08831$. Therefore, we have some evidence that the die might not be fair. The standardized residuals are given in the following table.

i	1	2	3	4	5	6
r_{i}	-0.069541	0.214944	-0.467818	-0.316093	0.309772	0.328737

None of these look unusual.

